合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 阳离子、阴离子的界面润湿行为——摘要、介绍
> 表面张力是啥意思?简单解释下表面张力是什么现象
> 耦合表面张力的封闭腔体内管外自然对流传热特性
> 香豆素和磷脂混合物单分子层膜中的分子相互作用的界面性质——结果和讨论
> 水滴的表面张力使它尽量收缩从而形成球形
> N-月桂基-N-甲基葡萄糖酰胺【下】
> 尝叠膜分析仪-α-短螺旋抗菌肽对癌细胞选择性及其抗癌作用的分子机制:结果、讨论、结论、致谢!
> 水面上单分子层膜通过磷脂光控开关实现可逆光学控制:结果和讨论、结论
> 以豆蔻酸与氢氧化胆碱的配比控制泡沫的稳定性-IF=4.2-表面活性剂乳化气泡性能研究【下】
> 植物油中N-酰基氨基酸表面活性剂的界面活性和聚集行为——结果和讨论
推荐新闻Info
-
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 典型离子型与非离子型起泡剂的界面行为对泡沫性能的影响机制
> 新无氰白铜锡电镀液及电镀方法可降低表面张力,促进镀液对复杂工件的润湿
> 一种耐超高温酸液体系、制备方法及其应用
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(四)
> 复合驱中聚合物与阴离子表面活性剂的协同作用研究
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——结果、结论
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——摘要、实验方法
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(三)
尝叠膜-石墨烯与磷脂之间的作用【下】
来源:上海谓载 浏览 1584 次 发布时间:2022-07-25
GO在DODAB和DSEPC的单层上的吸附。虽然DODAB和DSEPC的两个头部基团具有相同的正电荷量,但其化学结构却大不相同。为了进一步表征DODAB、DSEPC和GO的正电荷头基团之间的相互作用,在表面压力20 mN/m下研究了GO对脂质单层的吸附研究,如图2所示。作为对照实验,首先将DODAB或DSEPC的单层在纯水亚相上压缩至20 mN/m,然后根据经过的时间监测表面压力(图2a,b中的黑色曲线)和表面电位(图2c,d中的黑色曲线)。正如预期的那样,最初压缩到20 mN/m的DODAB和DSEPC单分子膜在纯水亚相上非常稳定。在这两种情况下,6000 s后表面压力仍在18 mN/m左右(图2a,b中的黑色曲线)。表面压力在前1000秒内迅速下降可能是由于压缩后单分子膜松弛所致。还观察到表面电位随时间变化的类似稳定现象,如图2c,d所示。对于GO的吸附,在纯水上将DODAB或DSEPC的单层最初压缩至20 mN/m后,小心并缓慢地将600μL 1 mg/mL GO分散液注入水亚相中,使其达到0.02 mg/mL,然后监测表面压力(图2a、b中的红色曲线)或表面电位(图2c、d中的红色曲线)随时间的变化。值得注意的是,在亚相注入GO达到0.02 mg/mL不会导致空气中的表面压力增加?6000 s的水界面。如图2a,c所示,DODAB单层的表面压力增加到21.3 mN/m,而表面电位在前500 s下降到几乎0 mV。值得注意的是,图2c中的DODAB(红色)的表面电位曲线最初约为300 mV,然后小心缓慢地将GO注入亚相。表面压力和表面电位的变化清楚地表明,DODAB的正铵基和GO的负羧基之间存在静电相互作用。
图2:(a)DODAB和(b)DSEPC单层的表面压力与经过时间。(c)DODAB和(d)DSEPC单层的表面电位与经过时间的关系。黑色曲线:在纯水亚相上将单层压缩至20 mN/m的表面压力。红色曲线:将单层压缩至20 mN/m后,小心地将600μL 1 mg/mL GO分散液缓慢注入单层下方的水亚相中,使GO达到0.02 mg/mL。
As GO是一个非常薄的层(~1 nm)具有较大的表面积,研究其与脂质相互作用时的取向非常有趣。这里涉及两种可能的方向:“边缘入”和“面入”。“边入”表示GO板材的表面垂直,而“面入”表示水平方向。空中观察?水/水界面可以提供一些见解。我们提出,由于铵基和羧基之间的静电相互作用,GO片通过插入具有“边缘”取向的羧基进入有序的DODAB单层,如图3a所示。也有可能一些GO片在单层下方使用“面内”方向与带正电的头群相互作用。GO纳米片不太可能以“面内”方向并入单层(图3b)。首先,20 mN/m的DODAB单层足够紧密,边缘(约1 nm)比侧面(高达数百纳米)更容易挤压。其次,带负电的羧基主要存在于GO的边缘,而不是侧表面。表面电位的降低也归因于这种静电相互作用,因为带负电荷的结合进入有序的DODAB单层,中和了DODAB的电荷,降低了界面处的偶极矩。
图3.骋翱在空气中并入顿翱顿础叠(补,产)和顿厂贰笔颁(肠,诲)单层时可能的方向示意图?水界面。
如果GO通过与DODAB相同的方式与DSEPC单层结合,人们期望观察到类似的表面压力和表面电位现象。我们确实发现,当将GO引入亚相时,DSEPC单层的表面电位下降到50 mV左右(图2d,红色曲线),表明DSEPC单层存在偶极矩变化。然而,在DSEPC实验中观察到表面压力非但没有增加,反而降低,如图2b所示。因为DSEPC有很大一部分疏水尾锚定在空气中?水界面,不太可能将DSEPC分子损失到亚相。值得注意的是,在空中?水界面DSEPC的头基团为大块sn甘油-3-乙基磷酸胆碱,带有带正电的胆碱基团和sn-甘油-3-乙基磷酸的强极性基团。当GO从亚相扩散到界面处的DSEPC单层时,带负电的GO可能与DSEPC的带正电的胆碱部分相互作用,但由于受到sn-甘油-3-乙基磷酸的屏蔽而没有渗透到单层中,如图3c,d所示。GO也可能与DSEPC单分子膜相互作用,在单分子膜下方具有“边缘入”和“面入”方向,如图3c所示。GO的静电相互作用不仅中和了DSEPC中头部基团的正电荷密度,而且导致DSEPC分子在界面上更紧密地堆积。该假设解释了当GO从亚相扩散到DSEPC单层时,表面压力和表面电势的下降。
如果我们对于DODAB和DSEPC的GO-to单层的不同结合行为的假设是正确的,那么当初始表面压力较低时,可以预期观察到DODAB的表面压力会有更大的增加。事实上,当GO与最初压缩至15 mN/m的DODAB单层结合时,实验中发现表面压力增加约2.5 mN/m,如图4a(粉红色曲线)所示。另一方面,当DODAB单分子膜的表面压力足够高时,GO的任何边缘都不能挤入紧密堆积的单分子膜中。如图4a(黑色曲线)所示,当DODAB单层压缩至25 mN/m时,亚相GO不会导致表面压力增加。在DSEPC的情况下,当GO注入到亚相时,单层的表面压力降低。总之,这些观察结果验证了图3中提出的GO在界面处与DODAB和DSEPC单层结合的模型。
图4.GO在不同表面压力下对(a)DODAB和(b)DSEPC单层的吸附研究(表面压力与经过时间的关系)。首先将单层压缩至纯水亚相上的一定表面压力,然后小心地将600μL 1 mg/mL GO分散液缓慢注入单层下方的水亚相。
朗缪尔原子力显微镜图像?Blodgett(LB)薄膜。原子力显微镜(AFM)是一种在高分辨率下观察LB膜形貌的强大、非破坏性方法。转移到基板上的LB膜表面可以重复成像,而不会损坏样品。在本研究中,首先从空气中转移表面压力为20 mN/m的DODAB或DSEPC的Langmuir单层?纯净水或空气?将水分散体界面转移到新切割的云母基板上,然后在空气中干燥并进行AFM成像。图5a显示了将5μL 0.02 mg/mL GO分散液涂在云母上并干燥后的GO纳米片的形态。图中的白色曲线显示了白色虚线横截面轨迹的提取轮廓。发现GO纳米片高度均匀约为1 nm,长度分布较大。
图5.新切割云母表面上的AFM图像(比例尺=1μm):(a)干燥后的一滴GO分散液;(b)LB膜在空气中不沉积脂质的对照实验?GO-水界面;(c)从空气中转移的DODAB LB膜?纯水界面;(d)从空气中转移的DODAB LB膜?GO-水界面;(e)从空气中转移的DSEPC的LB膜?纯水界面;(f)从空气中转移的DSEPC的LB膜?转到水界面。所有脂质LB膜在20 mN/m的恒定表面压力下转移。
这证实了围棋确实是单层的。16,34,35图5c和5e显示了以20 mN/m的速度从空气中转移的DODAB和DSEPC的LB膜的AFM图像?分别为纯水界面。在这两种情况下,薄膜相当均匀,表明形成了均匀的单层。36有一些深度为0.4的小孔?0.5 nm,可以假设为DODAB或DSEPC的单个分子层的高度。为了研究在空气中形成的DODAB和DSEPC LB膜的形貌?GO分散界面,在相同条件(面积、压缩速度和提升率)下进行LB膜的控制实验,而不在空气中扩散DODAB或DSEPC?GO色散界面。如图5b所示,观察到几乎裸露的云母表面,表明GO分散子相的GO纳米片不可能转移到云母表面。这可能是由于带负电的GO纳米片和带负电的云母表面之间存在不利的相互作用。当DODAB或DSEPC LB膜以20 mN/m的速度从空气中转移时?如图5d和5f所示,在DODAB或DSEPC的LB膜中可以清楚地找到GO分散界面和GO纳米片。LB膜中GO的高度也约为1 nm。GO的存在证实了GO纳米片确实吸附或结合到DODAB或DSEPC的单层中。值得注意的是,脂质DODAB和DSEPC直接沉积在GO分散体的亚相上,以获得用于AFM成像的LB膜。对于GO与脂质单层结合时的方向(图5d,f),AFM成像在LB膜上仅观察到GO的“面内”方向。即使可以想象,当DODAB或DSEPC沉积在空气中时,GO的方向应该存在一些“边缘”?对于水分散体界面,原子力显微镜无法观察到这种方向。这是因为在转移过程中,围棋的方向很容易改变。当转移到云母表面时,“边缘”取向不太可能仍然“站立”在其尺寸为1 nm的边缘上,而不“躺着”在其大平面上。因此,在AFM图像中观察到GO的“面内”取向并入或吸附在单层结构中。
结论
在本研究中,朗缪尔单层技术作为二维方法应用于空气中?水/水界面,以了解骋翱和脂质模型之间相互作用的性质和方向。为了使可能的相互作用合理化,我们特意选择了五种具有相同18碳烷基链但不同电荷头基团的脂质。实验结果表明,这些脂质和骋翱之间的相互作用明显受静电相互作用的控制。当这些脂质在空气中传播时?骋翱分散界面,骋翱可以结合或吸附到带正电的脂质顿翱顿础叠和顿厂贰笔颁的单层中,增加平均分子面积。然而,由于没有有利的静电相互作用,带中性电荷的头基(磷酸胆碱)或带负电荷的头基(磷酸和羧基)的单分子膜不吸附骋翱。由于生物系统中的磷脂带负电荷或中性电荷,细胞可能将骋翱摄取到膜中不应是由于骋翱和磷脂之间的直接静电相互作用,而是通过膜的生物活性。
当将骋翱注入顿翱顿础叠和顿厂贰笔颁正电荷单层下方的子相时,发现了不同的表面压力观察结果。骋翱可以以20尘狈/尘的速度插入到顿翱顿础叠的单层中,从而增加表面压力。然而,由于乙基磷酸基团的屏蔽作用,即使在低得多的表面压力下,骋翱也不能扩散以与顿厂贰笔颁单层结合。提出了骋翱与顿翱顿础叠和顿厂贰笔颁单分子膜结合时的取向模型,以解释骋翱在空气中的不同吸附行为?水界面。当骋翱纳米片插入到顿翱顿础叠的单层中时,提出了“边缘入”方向而不是“面入”方向来描述骋翱纳米片的方向。