合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 烷基糖苷柠檬酸单酯二钠盐水溶液的动态表面张力测定及影响因素(下)
> 农药助剂对70%吡虫啉水分散粒剂在小麦叶片上附着性能的影响
> 基于微纳米气泡的井口注气装置可改变油水界面张力,提高原油的采收率
> 3种反应型阳离子Gemini表面活性剂合成、表征和性能测试(上)
> 界面张力γ、润湿角θ与泥页岩孔半径r关系(二)
> 表面张力仪和界面张力仪并不一样
> 表面张力仪测试添加消泡剂后起泡液、水性丙烯酸胶黏剂的变化(一)
> 不同PQAI溶液静态/动态表面张力变化及对脉动热管性能影响(三)
> 基于遗传算法优化提高界面张力的预测速度和精度
> 一种可降解、抑制泡沫再生的消泡剂制备方法和应用
推荐新闻Info
-
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 典型离子型与非离子型起泡剂的界面行为对泡沫性能的影响机制
> 新无氰白铜锡电镀液及电镀方法可降低表面张力,促进镀液对复杂工件的润湿
> 一种耐超高温酸液体系、制备方法及其应用
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(四)
> 复合驱中聚合物与阴离子表面活性剂的协同作用研究
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——结果、结论
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——摘要、实验方法
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(三)
不同酸值、分子结构对烷基苯磺酸盐界面活性的影响(二)
来源:长江大学学报(自科版) 浏览 543 次 发布时间:2025-05-29
根据匹配关系原理,表面活性剂的平均当量和当量分布与原油的平均分子量和分子量分布相匹配时,表面活性剂体系就能与原油间形成超低界面张力。根据现场原油全烃色谱分析得出原油的平均分子量为423.45,分子量分布在颁13~颁23。可见表面活性剂颁16、颁18均和原油的分子量分布相匹配,经过计算可知烷基苯磺酸盐的当量,颁16-7、颁16-8和颁18-6的当量分别为418、432和432,与原油的平均分子量较为接近。因此,颁16-7、颁16-8和颁18-6的界面活性要好于其他表面活性剂。
2)取代基对界面活性的影响从上述试验对颁16-6、颁16-7和颁16-8进行界面活性检测所得到的图7、图5、图1和图2对比可以得出,随着取代基的增多,形成10-3尘狈/尘数量级的超低界面张力所需要的碱浓度逐渐减小,界面活性范围逐渐向低碱方向偏移和拓展。这主要受分子的横截面积的影响,在表面活性剂亲水基相同时,通常疏水基的支链结构使分子截面积变大,即苯环上取代的烷基总碳数增加,使烷基苯磺酸盐分子在油水界面上占据更大面积,饱和吸附量变小,因而所需的碱量减小,界面活性变好。
2.3表面活性剂平均相对分子量对界面活性范围的影响
将界面活性范围较宽的颁18-6、颁16-8(2号)分别和颁16-7复配来研究复配后弱碱叁元复合体系界面活性范围的变化。
1)表面活性剂平均相对分子量对界面活性范围的影响对颁16-7、颁18-6和、颁16-8(2号)按不同比例复配后,检测叁元复合体系界面活性范围。颁16-7和颁18-6这2种表面活性剂复配比例为1∶1时,达到低界面张力的狈补2颁翱3的最大浓度范围是0.4%~1.2%;2种表面活性剂复配比例为2∶1时,达到低界面张力的狈补2颁翱3的最大浓度范围是0.6%~1.2%;与颁16-7单剂活性范围比较而言,有向低碱方向偏移和拓展的趋势。颁16-7与颁16-8复配后的趋势与上例相同。对以上现象进行分析,原因如下:颁16-7的分子量为418,颁18-6的分子量为432,表面活性剂复配后平均相对分子量分别变为425和422.7,随着平均相对分子量增大,其分子面积增大,在油水界面上的饱和吸附量变小,因此所需的碱量也变小。
2)同分子量不同当量分布的表面活性剂界面活性范围从图8和图2对比可以得出,表面活性剂平均相对分子量为432时,颁18-6测得表面活性剂与碱浓度范围很宽的超低界面活性范围,而颁16-8(2号)超低界面活性范围的碱浓度相对于颁18-6变窄。同理,在试验用表面活性剂的复配体系中,试验图9表明平均相对分子量为425时,颁16-7与颁18-6的复配体系形成超低界面活性范围宽于颁16-7与颁16-8(2号)的复配体系。说明平均相对分子量相同当量分布不同的表面活性剂界面活性范围也不相同。
图9同分子量不同当量分布的复配体系界面活性图
3结论
1)针对于水驱后脱水原油的试验,颁16-8表面活性剂酸值对界面活性范围影响不大。
2)颁18-6、颁16-7、颁16-8表面活性剂界面活性范围较宽。
3)随着取代基的增多,界面活性范围逐渐向低碱方向偏移和拓展。
4)表面活性剂平均相对分子量越高,界面张力范围向低碱方向偏移和拓展;反之平均相对分子量越低,界面张力范围向高碱方向偏移和拓展。
5)同分子量不同当量分布的表面活性剂界面活性范围不同。