合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 表面活性剂定义、性质、原理及应用
> ?表面张力仪测量数据影响因素:清洁、温度、气相压力
> 水和乙二醇-水混合体系中的离子液体-阳离子表面活性剂混合胶束自聚焦-电导法 表面张立法和光谱研究法—
> 内分泌物在胶束中的增溶作用——结果和讨论
> 表面活性剂的生物毒性以及水的硬度和吸附效应对于水生生物毒性的影响——摘要、导言
> 香豆素和磷脂混合物单分子层膜中的分子相互作用的界面性质——结果和讨论
> 表面张力的形成同处在液体表面薄层内的分子的特殊受力状态密切相关。下列现象,与表面张力无关的是:
> 简述表面张力的性质
> 水面上单分子层膜通过磷脂光控开关实现可逆光学控制:结果和讨论、结论
> 表面活性剂的乳化作用
推荐新闻Info
-
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 典型离子型与非离子型起泡剂的界面行为对泡沫性能的影响机制
> 新无氰白铜锡电镀液及电镀方法可降低表面张力,促进镀液对复杂工件的润湿
> 一种耐超高温酸液体系、制备方法及其应用
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(四)
> 复合驱中聚合物与阴离子表面活性剂的协同作用研究
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——结果、结论
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——摘要、实验方法
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(三)
基于表面张力和毛细力的液滴转印方法
来源:清华大学 浏览 1840 次 发布时间:2021-11-08
近日,清华大学航天航空学院、柔性电子技术研究中心冯雪教授课题组报道了一种利用液滴表面张力来实现柔性器件高精度、高成品率转印的方法,该方法可以实现薄膜器件复杂异形曲面的转印集成。研究人员通过毛细管对液滴形态的控制,调控固-液界面的粘附力,从而实现柔性器件的转印。这种方法不仅可以实现超薄柔性器件的转印,还提供了一种基于平面工艺实现复杂异形曲面制备的新方法,为曲面柔性电子器件的制造提供了新的途径,扩展了转印技术在柔性电子技术研究中的应用。
图1.液滴转印流程示意图
柔性电子器件是通过将功能薄膜集成到高分子聚合物柔性衬底上来实现柔性和延展性的。由于柔性衬底无法为功能薄膜提供生长和制备的环境,柔性电子器件的制备工艺必须增加一个重要的环节—转印,即将功能薄膜从其生长的无机半导体衬底上剥离、再印制到柔性承印衬底上。目前,学界已提出多种转印技术,对于接触式转印方法,印章与器件表面紧密贴合,在拾取和印制过程中,过大的接触应力会导致器件损坏,尤其发生在超薄和多层器件中;对于基于热控制的转印方法,工艺过程中柔性衬底容易发生热膨胀,进而导致器件失效,无法进行精密结构的制备;对于以牺牲层为代表的非接触方法,器件的制造需经历多次加热,残余应力容易影响器件定位精度,难以实现精确的印制。
针对当前转印技术中存在的问题,研究人员结合接触式和非接触式转印的特点,提出了一种基于表面张力的液滴转印方法,利用液体的流变特性,通过毛细管对液滴形态的控制,调控固-液界面的粘附力,从而实现柔性器件的转印,该方法减少了超薄柔性器件的转印过程中印章对器件的损伤,同时也为曲面电子器件的制造提供了新的思路。
图2.(补)传统印章和液滴印章针对超薄尝贰顿芯片转印集成的结果对比;(产)锥螺旋微天线与异形曲面的转印集成
当液体印章与待转印器件/单元结合时,液滴对器件进行包裹,进而实现保护器件的作用。相比于传统弹性印章转印方法,液体的流变特性充分发挥作用,使得薄膜器件更容易转印到多种复杂的空间曲面上。通过对固-液界面粘附力的理论分析,提出了基于液滴印章的转印技术,实现了柔性薄膜的高度精确可控转印,并通过实验证实了理论模型的正确性与该转印方法的可行性。研究人员通过液体印章转印方法,成功实现了30微米超薄尝贰顿芯片的转印集成(图2补为传统印章和液滴印章转印对超薄尝贰顿芯片转印结果的对比)与锥螺旋微天线与异形曲面的转印集成(图2产)。此方法利用了表面张力和毛细作用,可以实现转印期间印章-薄膜作用力的精确调控,进而能够高效、高质量地完成超薄器件的转印;利用二维制备工艺和转印技术,实现了立体空间微结构和异形界面的集成,为曲面电子器件的设计与制备提供了一种新的方案。
清华大学航天航空学院博士生刘鑫为文章第一作者,马寅佶助理研究员、冯雪教授是论文共同通讯作者。该研究工作得到了国家自然科学基金项目的资助。
论文信息:
Liquid Droplet Stamp Transfer Printing
Xin Liu,Yu Cao,Kunwei Zheng,Yingchao Zhang,Zhouheng Wang,Yihao Chen,Ying Chen,Yinji Ma*,Xue Feng*
(来源:清华大学版权属原作者谨致谢意)