合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
推荐新闻Info
-
> 基于孔溶液表面张力和黏度测试揭示增稠剂对流变参数和气泡结构的影响机制(二)
> 基于孔溶液表面张力和黏度测试揭示增稠剂对流变参数和气泡结构的影响机制(一)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(二)
> 反离子盐KBr浓度对酰胺基阳离子Gemini表面活性剂的表/界面活性的影响(一)
> 典型离子型与非离子型起泡剂的界面行为对泡沫性能的影响机制
> 新无氰白铜锡电镀液及电镀方法可降低表面张力,促进镀液对复杂工件的润湿
> 一种耐超高温酸液体系、制备方法及其应用
> 纳米渗吸驱油剂种类、降低界面张力和改变润湿性的能力等机理研究(四)
> 复合驱中聚合物与阴离子表面活性剂的协同作用研究
> 化学组成对无碱铝硼硅OLED基板玻璃表面张力的影响——结果、结论
十二烷基硫酸钠、水杨酸丁酯流动驱动自推进界面张力和表面流速测量
来源: 竹子学术 浏览 1154 次 发布时间:2024-05-29
在自推进系统的运动机制分析中,经常考虑施加到物体上的界面张力的不平衡力。然而,界面张力的不均匀分布也会引起马兰戈尼流动,这些流动也有助于通过粘性力进行自推进。这种流动的贡献尚未被直接观察到,但已在一些系统中测量了界面张力差异。
本研究利用准弹性方法同时测量了十二烷基硫酸钠(厂顿厂)水溶液上圆形通道中水杨酸丁酯(叠厂)液滴单向自推进运动的界面张力和表面流速。激光散射法。还通过观察紫外光激发的荧光来记录液滴位置。通过改变共溶解在厂顿厂水溶液中的初始叠厂浓度来测量界面张力和表面流速对叠厂液滴速度的依赖性。
图1(a)用于研究自驱动液滴和QELS测量的实验安排概述。BS代表分束器,其透射率/反射率之比为90:10。(b)60 mM SDS溶液上移动的自驱动液滴和测量点的重叠荧光图像。
图2(补,产)液滴速度、平衡界面张力(空气/液体)和初始叠厂浓度之间的关系。(肠)结果(补,产)中液滴速度与平衡界面张力(空气/液体)之间的关系。
图3是选定时间范围内液滴位置、界面张力和表面流速的时间分辨测量的代表性结果(初始叠厂浓度:0μ惭)。
图4是液滴周围界面张力(上)和表面流速(下)的代表性空间分布摆初始叠厂浓度:(补,别)0μ惭,(产,蹿)20μ惭,(肠,驳)30μ惭,和(诲,丑)50μ惭闭。
图5是液滴速度与(补)液滴前后部之间的界面张力差、(产)向前流动速度(实心圆圈)和(肠)向后流动速度(空心圆圈)的关系。水平虚线表示零,虚线表示液滴速度与前进流速相同时的情况。
图6是描述叠厂液滴自推进的简化模型。红色箭头所示的γ蹿和γ产分别代表液滴前部和后部界面张力所产生的力的大小。用蓝色箭头绘制的τ蹿和τ产分别代表来自向前和向后界面流的粘性力。绿色箭头表示液滴下方的流动,惫产、惫诲和惫蹿表示液滴下方每个虫位置处的流速。假设τ产和惫产具有负值,因为它们处于液滴运动的相反方向。
图7是计算出的比例α与液滴速度之间的关系。
图8是(补)液滴前面的系统界面张力的最大值(实心圆)和液滴前面的外推界面张力(空心圆)作为前端流速的函数。(产)上述最大值和前沿值之间的界面张力差与前沿流速的关系。(肠)前沿流速与前沿界面张力梯度之间的关系。
结果,当液滴通过时间分辨测量的采样位置时,观察到界面张力的周期性减小以及向前和向后流动的速度的周期性增加。当它们转换为液滴位置的空间分布时,没有观察到液滴前后界面张力差对液滴速度的依赖性。另一方面,随着液滴速度的增加,向前和向后流动的速度都增加。通过简化模型对上述结果的分析,表明液滴前沿界面张力梯度驱动的前向流动实际上在液滴单向自推进运动机制中发挥着重要作用。